Journal of

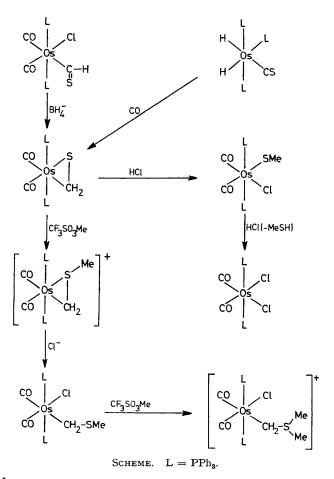
The Chemical Society,

Chemical Communications

NUMBER 24/1977

21 DECEMBER

Co-ordinated Thioformaldehyde Monomer. Synthesis and Reactions of $[Os(\eta^2-CH_2S)(CO)_2(PPh_3)_2]$


By TERRENCE J. COLLINS and WARREN R. ROPER* (Department of Chemistry, University of Auckland, Auckland, New Zealand)

Summary A stable complex of the unstable intermediate, thioformaldehyde, results from reaction of the thioformyl complex $[Os(CHS)Cl(CO)_2(PPh_3)_2]$ with NaBH₄; $[Os(\eta^2-CH_2S)(CO)_2(PPh_3)_2]$ forms methanethiolato-derivatives with acids but is alkylated on sulphur forming methylthiomethyl- and dimethylsulphonium methylide complexes.

ALTHOUGH several thioketone complexes are known in which the ligand is bound either through sulphur¹ or through both sulphur and carbon,² no stable complexes of monomeric thioaldehydes or of thioformaldehyde have been described. Pure thioformaldehyde has been generated by the high temperature decomposition of 1,2,4-trithiolan³ or methylsulphenyl chloride⁴ and has been established as a constituent of the interstellar medium.⁵

We recently observed⁶ that the thiocarbonyl ligand in $[IrH(CS)(PPh_{3})_{3}]$ was completely reduced by hydrogen to the methanethiolato-ligand and suggested that likely intermediates in this process were thioformyl and thioformalde-hyde complexes, corresponding to the transfer of one and two hydride ligands to the thiocarbonyl ligand, respectively. Examples of stable thioformyl complexes are now known^{6,7} and we describe here the preparation of a compound in which thioformaldehyde monomer functions as a *dihapto*-ligand.

Two possible synthetic approaches were considered: (i) starting with $[OsH_2(CS)(PPh_3)_3]^8$ and inducing transfer of both hydrides through reaction with CO and (ii) reaction of the previously characterised thioformyl complex, $[Os(CHS)-Cl(CO)_2(PPh_3)_2],^{6,7}$ with NaBH₄ (see Scheme). Method (ii) produces $[Os(\eta^2-CH_2S)(CO)_2(PPh_3)_2]$ in high yield but method (i) requires vigorous conditions owing to the inertness of $[OsH_2(CS)(PPh_3)_3]$ and, while $[Os(\eta^2-CH_2S)(CO)_2(PPh_3)_2]$ was

detected amongst the products, the major product was of low solubility and may have thioformaldehyde as a bridging ligand. Complex $[Os(\eta^2-CH_2S)(CO)_2(PPh_3)_2]$ forms colourless crystals; the thioformaldehyde protons in the ¹H n.m.r. spectrum (CDCl₃) appear as a triplet at τ 9.1 [³J(H-P) 4.6 Hz] (see Table for i.r. data). Reaction with acids

TABLE. I.r. data^a for osmium complexes.^b

Complex	$v_{\rm CO}/{\rm cm^{-1}}$
$\begin{array}{l} [\mathrm{Os}(\eta^2\text{-}\mathrm{CH}_2\mathrm{S})(\mathrm{CO})_2(\mathrm{PPh}_3)_2] \\ [\mathrm{Os}(\eta^2\text{-}\mathrm{CH}_2\mathrm{SMe})(\mathrm{CO})_2(\mathrm{PPh}_3)_2]^+ \\ [\mathrm{Os}(\eta^1\text{-}\mathrm{CH}_2\mathrm{SMe})\mathrm{Cl}(\mathrm{CO})_2(\mathrm{PPh}_3)_2] \\ [\mathrm{Os}(\eta^1\text{-}\mathrm{CH}_2\mathrm{SMe}_2)\mathrm{Cl}(\mathrm{CO})_2(\mathrm{PPh}_3)_2]^+ \\ [\mathrm{Os}(\mathrm{SMe})\mathrm{Cl}(\mathrm{CO})_2(\mathrm{PPh}_3)_2] \end{array}$	1985, 1915 2035, 1954 2025, 2005, 1952, 1934 2035, 1957 2038, 1950

^a Nujol mulls. ^b All compounds have satisfactory elemental analyses and ¹H n.m.r. spectra consistent with the formulations given. Cations characterised as trifluoromethanesulphonate salts.

(probably via protonation at the metal) is rapid to yield methanethiolato-compounds and in a further (slower) reaction, methanethiol is liberated (see Scheme). Thus stable examples are now available for each of the intermediates postulated in the hydrogenation of CS in [IrH(CS)-(PPh₃)₃].6

In contrast, alkylation with methyl trifluoromethanesulphonate occurs at the sulphur atom to yield first a dihapto-methylthiomethyl complex, $[Os(\eta^2-CH_2SMe)(CO)_2-$ (PPh₃)₂]⁺. Co-ordinating anions bring about ring-opening, $[Os(\eta^{1}-CH_{2}SMe)Cl(CO)_{2}(PPh_{3})_{2}]$. Further forming, e.g. methylation produces the dimethylsulphonium methylide complex, $[OsCl(\eta^1-CH_2SMe_2)(CO_2)(PPh_3)_2]^+$. Palladium and platinum complexes of these ligands have been derived from oxidative addition of CICH₂SMe to [Pd(PPh₃)₄] and $[Pt(PPh_3)_4]$, respectively, followed by methylation.⁹

(Received, 22nd August 1977; Com. 884.)

¹ R. G. W. Gingerich and R. J. Angelici, J. Organometallic Chem., 1977, 132, 377; B. A. Karcher and R. A. Jacobson, *ibid.*, p. 387. ² M. C. Baird and G. Wilkinson, J. Chem. Soc. (A), 1967, 865; D. Commercuc, I. Douek, and G. Wilkinson, *ibid.*, 1970, 1771; J. ^a M. C. Bard and G. Wilkinson, J. Chem. Soc. (A), 1967, 865; D. Commercuc, I. Douck, and G. Wilkinson, 101d., 1970, 1771; J. Browning, C. S. Cundy, M. Green, and F. G. A. Stone, ibid., 1969, 20.
^a H. Bock, B. Solouki, S. Mohmand, E. Block, and L. K. Revelle, J.C.S. Chem. Comm., 1977, 587.
⁴ B. Solouki, P. Rosmus, and H. Bock, J. Amer. Chem. Soc., 1976, 98, 6054.
⁵ M. W. Sinclair, J. C. Ribes, N. Fourikis, R. D. Brown, and P. D. Godfrey, Internat. Astronom. Union Circ., No. 2362, Nov. 1971.
⁶ W. R. Roper and K. G. Town, J.C.S. Chem. Comm., 1977, 781.
⁷ T. J. Collins and W. R. Roper, J.C.S. Chem. Comm., 1976, 1044.
⁸ T. J. Collins and W. R. Roper, J. Organometallic Chem., 1977, 139, C56.
⁹ G. Yoshida, H. Kurosawa, and R. Okawara, J. Organometallic Chem., 1976, 113, 85; 1977, 131, 309.